public abstract class ForwardingDOMDataReadWriteTransaction extends com.google.common.collect.ForwardingObject implements DOMDataTreeReadWriteTransaction
DOMDataTreeReadWriteTransaction
implementation which forwards all interface
method invocation to a delegate instance.Constructor and Description |
---|
ForwardingDOMDataReadWriteTransaction() |
Modifier and Type | Method and Description |
---|---|
boolean |
cancel()
Cancels the transaction.
|
com.google.common.util.concurrent.FluentFuture<? extends CommitInfo> |
commit()
Commits this transaction to be asynchronously applied to update the logical data tree.
|
protected abstract @NonNull DOMDataTreeReadWriteTransaction |
delegate() |
void |
delete(LogicalDatastoreType store,
org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier path)
Removes a piece of data from specified path.
|
com.google.common.util.concurrent.FluentFuture<Boolean> |
exists(LogicalDatastoreType store,
org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier path)
Checks if data is available in the logical data store located at provided path.
|
Object |
getIdentifier() |
void |
merge(LogicalDatastoreType store,
org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier path,
org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode<?,?> data)
Merges a piece of data with the existing data at a specified path.
|
void |
put(LogicalDatastoreType store,
org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier path,
org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode<?,?> data)
Stores a piece of data at the specified path.
|
com.google.common.util.concurrent.FluentFuture<Optional<org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode<?,?>>> |
read(LogicalDatastoreType store,
org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier path)
Reads data from provided logical data store located at the provided path.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
close
public ForwardingDOMDataReadWriteTransaction()
protected abstract @NonNull DOMDataTreeReadWriteTransaction delegate()
delegate
in class com.google.common.collect.ForwardingObject
public com.google.common.util.concurrent.FluentFuture<Optional<org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode<?,?>>> read(LogicalDatastoreType store, org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier path)
DOMDataTreeReadOperations
If the target is a subtree, then the whole subtree is read (and will be accessible from the returned data object).
read
in interface DOMDataTreeReadOperations
store
- Logical data store from which read should occur.path
- Path which uniquely identifies subtree which client want to readReadFailedException
or
an exception derived from ReadFailedException.public com.google.common.util.concurrent.FluentFuture<Boolean> exists(LogicalDatastoreType store, org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier path)
DOMDataTreeReadOperations
Note: a successful result from this method makes no guarantee that a subsequent call to DOMDataTreeReadOperations.read(org.opendaylight.mdsal.common.api.LogicalDatastoreType, org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier)
will
succeed. It is possible that the data resides in a data store on a remote node and, if that node goes down or
a network failure occurs, a subsequent read would fail. Another scenario is if the data is deleted in between
the calls to exists
and read
exists
in interface DOMDataTreeReadOperations
store
- Logical data store from which read should occur.path
- Path which uniquely identifies subtree which client want to check existence ofReadFailedException
or
an exception derived from ReadFailedException.public Object getIdentifier()
getIdentifier
in interface org.opendaylight.yangtools.concepts.Identifiable<Object>
public void put(LogicalDatastoreType store, org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier path, org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode<?,?> data)
DOMDataTreeWriteOperations
If you need to make sure that a parent object exists but you do not want modify its pre-existing state by using
put, consider using DOMDataTreeWriteOperations.merge(org.opendaylight.mdsal.common.api.LogicalDatastoreType, org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier, org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode<?, ?>)
instead.
put
in interface DOMDataTreeWriteOperations
store
- the logical data store which should be modifiedpath
- the data object pathdata
- the data object to be written to the specified pathpublic void merge(LogicalDatastoreType store, org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier path, org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode<?,?> data)
DOMDataTreeWriteOperations
If you require an explicit replace operation, use DOMDataTreeWriteOperations.put(org.opendaylight.mdsal.common.api.LogicalDatastoreType, org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier, org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode<?, ?>)
instead.
merge
in interface DOMDataTreeWriteOperations
store
- the logical data store which should be modifiedpath
- the data object pathdata
- the data object to be merged to the specified pathpublic boolean cancel()
DOMDataTreeWriteTransaction
DOMDataTreeWriteTransaction.commit()
already successfully completed)
will always fail (return false).cancel
in interface DOMDataTreeWriteTransaction
public void delete(LogicalDatastoreType store, org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier path)
DOMDataTreeWriteOperations
delete
in interface DOMDataTreeWriteOperations
store
- Logical data store which should be modifiedpath
- Data object pathpublic com.google.common.util.concurrent.FluentFuture<? extends CommitInfo> commit()
DOMDataTreeWriteTransaction
FluentFuture
conveys the result of applying the data changes.
This call logically seals the transaction, which prevents the client from further changing the data tree using
this transaction. Any subsequent calls to put(LogicalDatastoreType, Path, Object)
,
merge(LogicalDatastoreType, Path, Object)
, delete(LogicalDatastoreType, Path)
will fail
with IllegalStateException
. The transaction is marked as committed and enqueued into the data store
back-end for processing.
Whether or not the commit is successful is determined by versioning of the data tree and validation of registered commit participants if the transaction changes the data tree.
The effects of a successful commit of data depends on listeners and commit participants that are registered with the data broker.
private void doWrite(final int tries) { WriteTransaction writeTx = dataBroker.newWriteOnlyTransaction(); MyDataObject data = ...; InstanceIdentifier<MyDataObject> path = ...; writeTx.put(LogicalDatastoreType.OPERATIONAL, path, data); Futures.addCallback(writeTx.commit(), new FutureCallback<CommitInfo>() { public void onSuccess(CommitInfo result) { // succeeded } public void onFailure(Throwable t) { if (t instanceof OptimisticLockFailedException) { if(( tries - 1) > 0 ) { // do retry doWrite(tries - 1); } else { // out of retries } } else { // failed due to another type of TransactionCommitFailedException. } }); } ... doWrite(2);
Transaction may fail because of multiple reasons, such as
OptimisticLockFailedException
. It is the responsibility
of the caller to create a new transaction and commit the same modification again in order to update data
tree.
Warning: In most cases, retrying after an OptimisticLockFailedException will result in a high
probability of success. However, there are scenarios, albeit unusual, where any number of retries will
not succeed. Therefore it is strongly recommended to limit the number of retries (2 or 3) to avoid
an endless loop.
DataValidationFailedException
. User
should not retry to create new transaction with same data, since it probably will fail again.
Initial state | Tx 1 | Tx 2 | Result |
---|---|---|---|
Empty | put(A,1) | put(A,2) | Tx 2 will fail, state is A=1 |
Empty | put(A,1) | merge(A,2) | A=2 |
Empty | merge(A,1) | put(A,2) | Tx 2 will fail, state is A=1 |
Empty | merge(A,1) | merge(A,2) | A=2 |
A=0 | put(A,1) | put(A,2) | Tx 2 will fail, A=1 |
A=0 | put(A,1) | merge(A,2) | A=2 |
A=0 | merge(A,1) | put(A,2) | Tx 2 will fail, A=1 |
A=0 | merge(A,1) | merge(A,2) | A=2 |
A=0 | delete(A) | put(A,2) | Tx 2 will fail, A does not exists |
A=0 | delete(A) | merge(A,2) | A=2 |
Initial state | Tx 1 | Tx 2 | Result |
---|---|---|---|
Empty | put(TOP,[]) | put(TOP,[]) | Tx 2 will fail, state is TOP=[] |
Empty | put(TOP,[]) | merge(TOP,[]) | TOP=[] |
Empty | put(TOP,[FOO=1]) | put(TOP,[BAR=1]) | Tx 2 will fail, state is TOP=[FOO=1] |
Empty | put(TOP,[FOO=1]) | merge(TOP,[BAR=1]) | TOP=[FOO=1,BAR=1] |
Empty | merge(TOP,[FOO=1]) | put(TOP,[BAR=1]) | Tx 2 will fail, state is TOP=[FOO=1] |
Empty | merge(TOP,[FOO=1]) | merge(TOP,[BAR=1]) | TOP=[FOO=1,BAR=1] |
TOP=[] | put(TOP,[FOO=1]) | put(TOP,[BAR=1]) | Tx 2 will fail, state is TOP=[FOO=1] |
TOP=[] | put(TOP,[FOO=1]) | merge(TOP,[BAR=1]) | state is TOP=[FOO=1,BAR=1] |
TOP=[] | merge(TOP,[FOO=1]) | put(TOP,[BAR=1]) | Tx 2 will fail, state is TOP=[FOO=1] |
TOP=[] | merge(TOP,[FOO=1]) | merge(TOP,[BAR=1]) | state is TOP=[FOO=1,BAR=1] |
TOP=[] | delete(TOP) | put(TOP,[BAR=1]) | Tx 2 will fail, state is empty store |
TOP=[] | delete(TOP) | merge(TOP,[BAR=1]) | state is TOP=[BAR=1] |
TOP=[] | put(TOP/FOO,1) | put(TOP/BAR,1]) | state is TOP=[FOO=1,BAR=1] |
TOP=[] | put(TOP/FOO,1) | merge(TOP/BAR,1) | state is TOP=[FOO=1,BAR=1] |
TOP=[] | merge(TOP/FOO,1) | put(TOP/BAR,1) | state is TOP=[FOO=1,BAR=1] |
TOP=[] | merge(TOP/FOO,1) | merge(TOP/BAR,1) | state is TOP=[FOO=1,BAR=1] |
TOP=[] | delete(TOP) | put(TOP/BAR,1) | Tx 2 will fail, state is empty store |
TOP=[] | delete(TOP) | merge(TOP/BAR,1] | Tx 2 will fail, state is empty store |
TOP=[FOO=1] | put(TOP/FOO,2) | put(TOP/BAR,1) | state is TOP=[FOO=2,BAR=1] |
TOP=[FOO=1] | put(TOP/FOO,2) | merge(TOP/BAR,1) | state is TOP=[FOO=2,BAR=1] |
TOP=[FOO=1] | merge(TOP/FOO,2) | put(TOP/BAR,1) | state is TOP=[FOO=2,BAR=1] |
TOP=[FOO=1] | merge(TOP/FOO,2) | merge(TOP/BAR,1) | state is TOP=[FOO=2,BAR=1] |
TOP=[FOO=1] | delete(TOP/FOO) | put(TOP/BAR,1) | state is TOP=[BAR=1] |
TOP=[FOO=1] | delete(TOP/FOO) | merge(TOP/BAR,1] | state is TOP=[BAR=1] |
txA = broker.newWriteTransaction(); // allocates new transaction, data tree is empty txB = broker.newWriteTransaction(); // allocates new transaction, data tree is empty txA.put(CONFIGURATION, PATH, A); // writes to PATH value A txB.put(CONFIGURATION, PATH, B) // writes to PATH value B ListenableFuture futureA = txA.commit(); // transaction A is sealed and committed ListenebleFuture futureB = txB.commit(); // transaction B is sealed and committedCommit of transaction A will be processed asynchronously and data tree will be updated to contain value
A
for PATH
. Returned FluentFuture
will
successfully complete once state is applied to data tree.
Commit of Transaction B will fail, because previous transaction also modified path in a
concurrent way. The state introduced by transaction B will not be applied. Returned
FluentFuture
object will fail with OptimisticLockFailedException
exception, which indicates to client that concurrent transaction prevented the committed
transaction from being applied.
A successful commit produces implementation-specific CommitInfo
structure, which is used to communicate
post-condition information to the caller. Such information can contain commit-id, timing information or any
other information the implementation wishes to share.
commit
in interface DOMDataTreeWriteTransaction
TransactionCommitFailedException
or an exception derived from TransactionCommitFailedException.Copyright © 2019 OpenDaylight. All rights reserved.